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NOTES 

A Study of cis-trans lsomerization During Metathesis 
of cis-2-Pentene with the Catalytic System: 

W(C~)!jP(C&& + CZH~AICIZ + 02 

Homogeneous olefin disproportionation 
always gives a mixture of the geometric 
isomers of the starting olefin and of the 
products (I-2). However, with catalytic 
systems which exhibit a high activity, the 
final isomer composition always corre- 
sponds to the thermodynamic ratio of the 
geometric isomers. A few studies have al- 
ready been devoted to the steric course of 
metathesis in its early stages. Many cat- 
alytic systems have been used for metath- 
esis of cis-2-pentene and each showed in- 
dividual characteristics. With (WC& + 
C,H,OH + C,H,AICl,), Calderon et aZ. 
(1) found the reaction to be selective in 
favor of the cis isomer of the products 
(2-butene and 3-hexene) regardless of the 
isomeric nature of the initial 2-pentene. 
Many considerations led the authors to 
the conclusion that disproportionation is 
the principal mode of geometric isomeriza- 
tion. When n-butyl lithium was used as 
cocatalyst of WCl, (S), different stereo- 
chemical results were obtained with 2- 
pentene, since at 40% conversion the 
trans/cis ratio of 2-butene was 0.8 instead 
of the thermodynamic equilibruim ob- 
served with C,H,AlCl,. Moreover, Wang, 
Menapace and Brown (4) found that 
AlCI, increased the rate of metathesis of 
the system WCII;, n-butyl lithium but also 
favored the formation of more trans iso- 
mers in the products (2-butene and 3- 
hexene) and the remaining 2-pentene. 
They explained this result by assuming 
a more extensive isomerieation by cationic 
aluminum species, We report here our re- 

sults concerning the stereochemistry of 
cis-2-pentene metathesis with the catalytic 
system [W(CO),P(CsH,)3 + C,H,AlCl, + 
0,] and try to explain the results on 
kinetic grounds. 

The equipment used to perform kinetic 
experiments has already been described 
(5). The catalyst system consisted of 
W(CO),P(C,H,), (denoted W) + C,H,- 
AICI, (Al) + 0,; each component was 
necessary for catalytic activity. For ex- 
ample, in a typical experiment at room 
temperature no catalytic activity was ob- 
served for metathesis of cis-2-pentene in 
chlorobenzene with W + Al (Al: W = 4 
and olefin: W = 100). The activity was 
observed only when molecular oxygen was 
introduced in the system (0, : Al = 1.5). 

We will report here only the cis-trans 
composition of 2-butenes and 2-pentenes, 
the results obtained with 3-hexenes being 
similar to those of 2-butenes. When dis- 
proportionation of cis-2-pentene was per- 
formed with [W(CO)&, + EtAlCl, + 
w, the metathesis equilibrium was 
reached in 20 min and the cis-trans com- 
position corresponded to thermodynamic 
equilibrium for 2-butenes and 2-pentenes. 
However, in the early stages of the rkac- 
tion, cis-2-butene was produced in much 
higher amount as already observed by 
various authors with many catalytic sys- 
tems. The very high activity encountered 
in the first minutes is a real obstacle to 
the study of cis-trans isomeriaation. For 
this reason, we were led to use a catalyst 
which exhibited a weak activity. We have 
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already observed that upon introducing 0, 
to the catalytic system [W (CO)5P+3 + 
EtAlCl,] CO is slowly given off and the 
rate of metathesis is greatly lowered as 
CO is evolved. It is therefore possible to 
decrease the rate of reaction by a known 
factor upon introduction of the olefin at 
various stages of CO evolution (5). A 
typical result is given in Fig. 1 where cis- 
2-pentene is introduced after 1 CO per W 
has been evolved. In this case, the catalyst 
exhibits a very low activity since dispro- 
portionation equilibrium is reached in 
about 200 min. A significant result con- 
cerns the variation of the concentration of 
2-butenes with time (Fig. 1). In the first 
minutes, the cis-2-butene concentration in- 
creases, goes through a maximum and then 
decreases, whereas the trans-2-butene con- 
centration always increases. This indicates 
the presence of a secondary geometric iso- 
merization of cis-2-butene to the trans 
isomer. For a catalyst of low activity 
metathesis of cis-2-pentene would produce 
cis-2-butene and trans-2-butene with a cer- 
tain ratio tram/& (in favor of the cis 
isomer) and then a subsequent isomeriza- 
tion of cis-2-butene to trans-2-butene 
(probably by a metathetic process as 
shown below) 

In order to determine the limit ratio 
trans/cis of 2-butene at low conversion, 

: 

0 sb lb0 I!&3 
TIME (mn) 

FIG. 1. Variation of concentration of the re- 
actants with time during methathesis of &s-2- 
pentene. 3-Hexenes have been omitted for the 
clarity of the figure. (0) cis-2-pentene, (A) cis- 
2-butene. (+) tratts-2-butene, (0) trans-2-pentene. 

we made the following experiments: me- 
tathesis of cis-2-pentene was performed at 
various stages of CO evolution, so that it 
was possible to determine the ratio trans/ 
cis of butene for various conversions taken 
4 min after olefin introduction. The results 
are plotted in Fig. 2, together with data of 
Wang and Menapace (3) obtained with 
(WCl, + n-butyl lithium). Extrapolation 
to zero conversion gave a value of 0.6 j, 
0.1 for the tram/c& ratio of 0.66 at the 
very beginning of metathesis with the 
catalytic system (WCl, + C,H,OH + 
C,H,AlCl,) . 

The good agreement observed be- 
tween various precursor catalysts is very 
unexpected if we consider the major differ- 
ences in the oxidation number of W and 
in the nature of the cocatalyst. It could 
suggest a common intermediate active 
form of tungsten although it is not in itself 
a sufficient proof. It is interesting to note 
that both in homogeneous and hetero- 
geneous systems, tungsten catalysts exhibit 
a lower stereoselectivity than molybdenum 
catalysts for which ratios of 0.2 are ob- 
served at very low conversion (6, 7). 

In order to determine the more likely 
mechanism (cationic or metathetic) for 
the cis-trans isomerization of 2-butene, we 
made the following experiment. cis-2- 
Butene was introduced to [W (CO) ,P& + 
EtAlCl,] (without 0,) (Al/W = 4, G/W 
= XI) :cis-trans isomerization and double 
bond shift were observed in very minor 
amount. But when OZ was introduced [in 
such case, the system becomes very efficient 

FIG. 2. Influence of conversion on the ratio 
trans/cis of 2-butene. (1) Present results obtained 
with W(CO),P+,, EtAlCL, 0,; (2) results from 
Ref. (4). 
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for olefin metathesis and 2-butenes undergo 
metathesis with themselves (1) 1, instan- 
taneously cis-2-butene was converted to 
the thermodynamic cis-tram equilibrium 
with no butene-1 or its disproportionation 
products. This reaction was followed by 
an oligomerization reaction of the two iso- 
mers. If 0, was introduced to EtAlCl, 
alone in the presence of cis-2-butene, no 
cis-bans isomerization occurred, but a fast 
oligomerization of the cis isomer was ob- 
served. It must be pointed out here that 
the oligomerization was observed only when 
the ratio olefin:EtAlCl, was lower than 
ca. 10. This oligomerization observed after 
0, interaction with EtAlCl, is believed to 
be a cationic secondary reaction (8) but 
this does not seem to be the case for the 
cis-trans isomerization which occurs only 
in the presence of a metathetic catalytic 
system (W + Al + 0%)) and not with the 
system (Al -I- 0,). It seems therefore that 
cis-tram isomerization of 2-butene occurs 
here according to a metathetic mechanism. 

The initial rate of cis-trans isomeriza- 
tion of cis-2-pentene has also been mea- 
sured at various stages of CO evolution 
and compared with the rate of metathesis 
(defined as the rate of formation of 2- 
butene). Results are given in Fig. 3: the 
cis-trans isomerization of 2-pentene shows 
the same behavior as the metathesis reac- 
tion when CO is evolved, suggesting prob- 
ably a metathesis process for cis-trans 
isomerization of the starting olefin. 

Fm. 3. Catalytic activity for ci.s-trans isomer- 
ization of c&2-pentene (2) and for metathesis of 
cis-2-pentene (l), at various stages of CO 
evolution. 

The following conclusions can be drawn 
from our results: 

1. cis-trans isomerization of cis-2-butene 
is a secondary reaction of the dispropor- 
tionation reaction of cis-2-pentene. 

2. the metathesis of cis-2-pentene gives 
a mixture of trans and cis-2-butene with 
a ratio trans/cis = 0.6 at very low con- 
version and this apparently occurs for 
many catalytic systems which include W 
as transition metal. Cis-trans isomeriza- 
tion of cis-2-butene then proceeds prob- 
ably by a metathetic mechanism which 
progressively leads to thermodynamic 
equilibrium. 

3. It is possible that metathesis of cis- 
2-pentene gives also trans-2-pentene by a 
metathetic mechanism. 

These conclusions show the complexity 
of studying the kinetics of metathesis. In 
order to characterize the activity of a 
given complex for this reaction, one has to 
take into account the following parallel 
and consecutive reactions : 

cis - 3- hexene cis-2-butene 

II 
%g; kfl 

cis-2-pentene 

//* \ 

II 

k2 It k2 
fruns-3- hexene iI IfUnS-2- buiene 

lrans-2- pentene 

where k,/kl = 0.6, k’,/k’, = 0.86, and 
k, + k, = k’l -I- k’z. 

This explains why different steric be- 
havior is observed with various precursor 
complexes. This cis-trans composition de- 
pends mainly on the concentration and the 
lifetime of the active form of the catalyst: 
a trans/cis ratio close to the thermody- 
namic equilibrium indicates in fact a high 
metathesis activity and not a secondary 
cationic isomerization (4). 

It is interesting to note that cis-trans 
isomerization of polyalkenamer is also a 
secondary reaction during polymerization 
of cyclopentene (9), a result which shows 
the strong parallelism between metathesis 
of acyclic and cyclic olefins. 
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